A Volterra Equation with Nonintegrable Resolvent

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation

We consider the system of Volterra integro-dynamic equations x(t) = A(t)x(t) + ∫ t t0 B(t, s)x(s)∆s and obtain necessary and sufficient conditions for the uniform stability of the zero solution employing the resolvent equation coupled with the variation of parameters formula. The resolvent equation that we use for the study of stability will have to be developed since it is unknown for time sca...

متن کامل

Integral Equations, Volterra Equations, and the Remarkable Resolvent: Contractions

with special accent on the case in which a(t) is unbounded. We use contraction mappings to establish close relations between a(t) and ∫ t 0 R(t, s)a(s)ds. This work gives us a fundamental understanding of the nature of R(t, s). It establishes numerous elementary boundedness results including some from a new point of view. And it tells us that one of our long-held basic assumptions is very incom...

متن کامل

Fredholm-volterra Integral Equation with Potential Kernel

A method is used to solve the Fredholm-Volterra integral equation of the first kind in the space L2(Ω)×C(0,T ),Ω = {(x,y) : √ x2+y2 ≤ a}, z = 0, and T <∞. The kernel of the Fredholm integral term considered in the generalized potential form belongs to the class C([Ω]×[Ω]), while the kernel of Volterra integral term is a positive and continuous function that belongs to the class C[0,T ]. Also in...

متن کامل

Twisted Volterra equation

In this paper an extension of the q-deformed Volterra equation associated with linear rescaling to the general non-linear rescaling is obtained.

متن کامل

A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation

In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1979

ISSN: 0002-9939

DOI: 10.2307/2042881